
Structured Course Objects in a Digital Library

K. Maly, M. Zubair, X. Liu, M. Nelson, and S. Zeil
Department of Computer Science

Old Dominion University, Norfolk, Virginia 23592,USA
{maly,zubair,liu_x,nelso_m,zeil}@cs.odu.edu

Abstract

We are developing an Undergraduate Digital
Library Framework (UDLF) that will support
creation/archiving of courses and reuse of existing
course material to evolve courses. UDLF supports
the publication of course materials for later
instantiation for a specific offering and allows the
addition of time-dependent and student-specific
information and structures. Instructors and,
depending on permissions, students can access the
general course materials or the materials for a
specific offering. We are building a reference
implementation based on NCSTRL+, a digital
library derived from NCSTRL. Digital objects in
NCSTRL+ are called buckets, self-contained entities
that carry their own methods for access and display.
Current bucket implementations have a two level
structure of packages and elements. This is not a rich
enough structure for course objects in UDLF.
Typically, courses can only be modeled as a multi-
level hierarchy and among different courses, both
the syntax and semantics of terms may vary.
Therefore, we need a mechanism to define, within a
particular library, course models, their constituent
objects, and the associated semantics in a flexible,
extensible way. In this paper, we describe our
approach to define and implement these multi-
layered course objects. We use XML technology to
emulate complex data structures within the
NCSTRL+ buckets. We have developed authoring
and browsing tools to manipulate these course
objects. In our current implementation a user
downloading an XML based course bucket also
downloads the XML-aware tools: an applet that
enables the user to edit or browse the bucket. We
claim that XML provides an effective means to
represent multi-level structure of a course bucket.

Keywords

Digital Libraries, Buckets, Digital Objects, XML,
Undergraduate Education

1 Introduction

Instructional methods in academe are presently
the focus of a variety of evolutionary forces.
Instructional designers are advocating student-
centered paradigms [7], in which the student
becomes an active participant in the class and peer
collaboration becomes an important component in
the learning process. The availability of
increasingly affordable technology is encouraging
instructors to develop computer-based repositories
of course materials, for which the cost-effectiveness
depends in part upon the reuse of those materials
over multiple course offerings, possibly by different
instructors. The Internet is providing vast quantities
of reference material, albeit in a chaotic and only
partially indexed form. The Internet is also breathing
life into the longstanding goal of distance education
for students with limited access to qualified
instructors. However, there are many obstacles that
must be overcome by the individual instructor to
take advantage of these new educational
opportunities. Reuse of course materials among
different instructors is complicated by the variety of
possible storage formats and delivery methods.
Resource discovery by instructors and in student-
conducted research is hindered by the complexity of
many course material collections and especially by
the vast, unorganized nature of the Web, where
search engines are heavily biased towards high
recall. The determination of what, among a huge
number of “hits'”, is valuable and what is dross may
be difficult enough for the instructor, and much
more so for students.

Digital libraries (DLs) would seem to offer a
partial solution to these problems [2, 9, 16] by
adding organization, improved search capabilities,
and a better guarantee of archival integrity (avoiding
the “link rot” and “content rot” so often associated
with unstructured collections on the Web).
Currently, however, there are numerous single
domain digital libraries with neither uniform
interfaces nor mechanisms for employing them in
tandem outside their specific domain of expertise [8]

We are developing an Undergraduate Digital
Library Framework (UDLF) [12] specifically to
address the problem of digital libraries in the
undergraduate environment. We envision a process
and an environment where course materials can be
archived in a UDLF library. These generic course
materials can then be instantiated for specific
offerings, by adding time-dependent and student-
specific information and structures. Instructors and,
depending on permissions, students can access the
general course materials or the materials for a
specific offering. Administrators, reviewers, and
other accreditors may likewise read materials and
may, if permitted, add annotations.

A UDLF library can foster reuse of course
materials simply through the long-term assurance of
archival integrity that it provides. Reuse of materials
by other instructors, for other courses, however,
requires easy identification of the purpose or role
that individual elements play in the course structure.
Reuse from a dynamic archive also introduces
problems of maintaining consistency in the face of
change. Perhaps the most complicated aspect of
course reuse is the possibility that the very structure
of the archive will evolve over time. Instructors may
alter the way they choose to organize their materials,
or may move to new host technologies for course
delivery, e.g., moving from native files and
directories to a course management package such as
WebCT [22].

In this paper we concentrate on one aspect of
UDLF: the representation of course objects and tools
necessary to manipulate them. The reference
implementation of UDLF builds on NCSTRL+ [19],
which is based upon digital objects called buckets.
Buckets are programmable objects that can
aggregate and group arbitrary basic objects such as
MIME-type files. They also are intelligent and can
handle such tasks as displaying themselves upon
proper credential presentation. Buckets are similar to
Kahn-Wilensky Digital Objects [10] and their
derivatives, but are optimized for digital library
applications. Buckets provide an archive neutral
method of course material reuse, independent of
transitory file formats or preparation applications. In
section 2 we will describe this core technology. The
current implementation of buckets is not suitable for
an efficient realization of digital objects in UDLF.
Objects in UDLF need to have a complex structure
to reflect a course. Buckets, in their current
implementation, only support two levels of
aggregation, which is not nearly enough. In section 3
we describe the requirements for course objects and
in section 4 we describe our approach to create a
course model and its specification in XML. In
section 5 we demonstrate how we have translated
these requirements and models into tools that can

read an XML-specified course object and produce a
bucket that can be published into NCSTRL+.

2 NCSTRL+

Old Dominion University and NASA Langley
Research Center are developing NCSTRL+ to
address the problem of having DLs provide support
for multiple disciplines and multiple data types.
NCSTRL+ is based on the Networked Computer
Science Technical Reference Library (NCSTRL)
[5], which is a highly successful digital library
offering access to over 150 university departments
and laboratories since 1994, and is implemented
using the Dienst protocol [6]. During its
development stage, NCSTRL+ includes selected
holdings from the NASA Technical Report Server
(NTRS) [17] and NCSTRL. NCSTRL+ provides
support for multiple disciplines by defining clusters,
a way of partitioning the collection along pre-
defined axes. There is a "subject" cluster, allowing
the separation and combination of holdings along the
dimension of disciplines such as aeronautics, space
science, mathematics, computer science, and
physics. Additionally, there are clusters along the
dimensions of "publishing organization", "terms and
conditions" and "archival type", such as project
reports, journal articles, and theses.

NCSTRL+ holdings are published in buckets
[18], object-oriented constructs for creating and
managing collections of logically related
information units as a single object. Buckets are
self-contained, mobile, DL protocol-independent
"archivelets" that manage and update their own
content, enforce their own terms and conditions, and
handle negotiation and display of their contents.
Buckets support a "Smart Object, Dumb Archive"
(SODA) model for DLs where the data objects
themselves are imbued with much of the
functionality generally associated with archives (the
objects become "smarter"), and the archives
themselves are only concerned with providing
resource discovery functions for digital library
services [13].

Buckets have a domain independent two-level
structure where the basic unit of storage is an
element, and groups of elements are stored in a
package. Buckets can contain any number of
packages, and packages can contain any number of
elements. The interpretation of packages and
elements in any particular application is application-
dependent and is left to the bucket creator. Similarly,
there is no pre-defined requirement for bucket
contents -- buckets provide mechanism, not policy.
Our current implementation of buckets is written in
Perl 5, and uses http as a transport protocol. Bucket
metadata is stored in RFC-1807 format [11], and

package and element information is stored in newly
defined optional and repeatable fields. Packages are
stored as subdirectories within a bucket, and
elements are stored as files within the package
subdirectories. However, the implementation is
transparent to the user, and access is defined only in
terms of a bucket API that is realized as a set of http
messages. A Common Gateway Interface (CGI)
script parses the http messages, enforces the terms
and conditions, manages the contents, and handles
the display of the contents to the user.

3 Multi-Level Course Bucket
Requirement

Examination of how instructors currently
maintain course and offering material in native file
systems reveals that this material is organized in
complex, multi-layer hierarchies and graph
structures [12]. Figure 1 shows an example of one

such structure, taken from a senior level software
engineering course. The complexity of the structure
reflects a conflict among 1) the desire to organize
materials via "natural" classifications (assignments,
tests, lecture notes, etc), 2) the existence of more
than one such "natural" classification (e.g., which is
more natural: grouping together all assignments for a
single student or all l student submissions for a
single assignment?), and 3) the desire to isolate
materials requiring different levels of visibility or
security.

A library for such course materials must support a
substantial and dynamically growing variety of
media formats. Examination of the files in this
instructor's course shows the presence of PostScript,
PDF, LaTeX, fig, MS Word, MS Powerpoint, MS
Excel, HTML, GIF, JPEG, and ASCII text, as well
as data files for more specialized programs

employed by the instructor. This list of formats is
likely to vary considerably among instructors.

More importantly, a library for course materials
must allow archiving, access, and recovery of user-
designed file structures of arbitrary depth and width.
The hierarchical structure evolved by instructors for
their courses is likely to be both complex and
idiosyncratic. Many instructors will be unwilling to
rearrange their files to fit a pre-selected structure,
because of the effort involved in accomplishing the
rearrangement or because of external tools employed
by the instructor that may depend upon retaining the
original structure.

Tools for building and accessing courses must be
easy to use. The file structure employed by an
instructor reflects, in part, the instructor's own
mental model for the organization of the course
materials. The ease of use of any library
archiving/retrieval tools will depend in large part to

the degree in which they support or are compatible
with the instructor's existing mental model. Tools
should not require instructors to significantly
rearrange their preferred delivery organization. The
tools should provide automated aid for capturing the
instructor's organization and for searching and
retrieval based upon terms familiar to teachers such
as “syllabus”, “assignment”, or “exams”.

The requirement that a library support arbitrarily
deep and complex structures is in marked contrast to
the capabilities of many DLs, including NCSTRL+,
that support only limited, shallow hierarchical
structures. It is, however, reminiscent of the similar
evolution undergone in the transition from
conventional to object-oriented data bases (OODBs),
from supporting tuples of simple data to supporting
rich abstract data types [3], and in the design of large
software engineering repositories (SERs) [21,22].
The predominant approach taken in these other

publ ic

I n s t r uc to r & T A

Ins tructor only

p r i v a t e 1 s r , th e n p u bl ic

In s tructor 's M od el - C S 451

Figure 1. A course structure

S p r in g 97

d es c r i p t io n f i l es

f i le s

s o l ut i on

f i le s g r ad e

S tu d e n t1 S tu d en t2 . . .

S ub m iss ion s

c om p i le s cr ip t

in p u t s e xp e c ted ou tp u t s o r ac le s c r i pt

T e st0 T e s t1 . ..

T e sts

T e st in g

A ss t 1 A ss t 2 .. . G r ad i n g sc r i p ts

A ss ig nm en t s H o m e P a ge

. te x , .p p t f i l es ps , p d f , h tm l

C h ap ter 1 C h ap te r 2 . . .

L e ctu r e s

.te x , .p p t f i le s p s, p d f , h tm l

S y ll ab u s

H a n d ou ts e -m a il A rc h ive

. te x , .p p t f i l es ps , p d f , h tm l

m i d term f i n a l

te sts /q u iz ze s

S p r i ng 9 8

C S 4 5 1

arenas has been to develop programming language-
inspired type systems with support for abstraction
and information hiding, reflecting the fact that
OODBs and SERs provide objects that will be
subjected to subsequent algorithmic manipulation. In
UDLF, however, we are more concerned with
capturing the "data structure" than with providing
mechanisms for defining minimal interfaces, as the
preservation and manipulation of the content is our
primary concern.

4 Approach for Realizing Multi-Level
Buckets in UDLF

4.1 XML Specification for a Course Bucket

A bucket in NCSTRL+ has a two level structure
that consists of packages and elements. As stated
earlier, we need a bucket structure with variable
numbers of levels, and we need the flexibility to
associate some pre-defined metadata to these levels.
We address this by using XML technology to
describe a bucket structure with variable number of
levels. The Extensible Markup Language (XML) is a
simple dialect of SGML and has been endorsed by
W3C [4]. XML gives us the flexibility to define new
tags and attributes. The XML approach does not
only help in expressing complex hierarchies in the
bucket, it also helps in creating efficient authoring,
browsing, instantiating, and searching tools. The free
availability of XML parsers from different computer
software vendors such as Microsoft, IBM, and Sun
eases the task of developing these tools.

Based on XML and the requirements of actual
courses we have derived a specification of a multi-
level course bucket. This specification has been
motivated by the metadata-related work being done
in the area of Digital Libraries. For example, use of
the HTML META tag and embedded Dublin Core
[24]. A related effort based on XML is the Resource
Description Framework (RDF) from the World
Wide Consortium [15]. The RDF is intended to
support resource descriptions for resource discovery
and also for rights management, privacy preferences,
content rating, evaluation and classification. We
have opted for XML at this time because of the lack
of tools available for RDF, but may explore RDF-
based specification in the future.

We now describe the Document Type Declaration
(DTD) for a multi-level course bucket. A DTD
enables the document to communicate meta-
information about its content. This meta-information
among other things includes the allowed sequence
and nesting of tags, attribute values and their types

and defaults. Although XML does not require a
DTD, one should be included in the document (in
our case the XML specification document of the
course bucket) to allow the XML parser to validate
the specification. A partial multi-level course DTD
with key declarations is shown below. A course
bucket XML specification has the
COURSEBUCKET element that contains two
elements: METADATA and SEMESTER, where
one or more SEMESTERs are optional. The two
attributes associated with the COURSEBUCKET
element are ID and PATH. The ID is the required
attribute and a typical value for this could be the
course number, for example "CS411". The PATH
attribute identifies where the bucket is located. The
METADATA element consists of several elements
that give meta-information about the course bucket.
Note that we also use the METADATA element for
lower level elements in our course bucket hierarchy.

<?xml version="1.0"?>
<!DOCTYPE COURSEBUCKET [

<!ELEMENT COURSEBUCKET (METADATA,SEMESTER*)>

<!ATTLIST COURSEBUCKET ID CDATA #REQUIRED>

<!ATTLIST COURSEBUCKET PATH CDATA #REQUIRED>

<!ELEMENT METADATA (BIB-VERSION, ID, ENTRY,
ORGANIZATION, LANGUAGE,TITLE, AUTHOR, NCSTRLPL
US_ARCHIVALTYPE, NCSTRLPLUS_TC,
NCSTRLPLUS_SUBJECT, DATE, KEYWORD,
ABSTRACT, PAGES, NCSTRLPLUS_URL)>

<!ELEMENT SEMESTER (METADATA, ASSIGNMENTS,
HOMEPAGE, LECTURES, HANDOUTS,
EMAIL-ARCHIVAL,EXAM)>

<!ELEMENT ASSIGNMENTS (METADATA, ASSIGNMENT*,
GRADINGSCRIPTS)>

<!ELEMENT ASSIGNMENT (METADATA, DESCRIPTION,
FILES, SOLUTION, SUBMISSIONS, TESTING)>
]>

4.2 Mapping of Multi-Level Buckets to Two-
Level Buckets of NCSTRL+

As the underlying repository for the course
bucket is the NCSTRL+, we need to map a multi-
level course bucket into a two-level format of the
NCSTRL+ bucket. One such mapping is illustrated
in Figure 2.

Note that in this mapping we store the multi-level
information in the name of the package element.
When the bucket is accessed through its handle (the
CGI script) it will display the packages and elements
in a two-level hierarchy. When the bucket is viewed
through the XML-based editor it will reveal itself as
a tree.

Figure 2. Mapping of a multi-level bucket to a two-level NCSTRL+ bucket

5 XML Aware Publishing and
Browsing Tools

In this section we describe tools that help in
publishing and browsing a multi-level course bucket.
We have implemented these tools in Java to enhance
portability - XML providing portable data, and Java
providing portable programs. The tools are
illustrated in Figure 3. The tools are written as Java
applets. When a user wants to browse a bucket, he or
she downloads the view applet along with the XML
specification of the bucket. The applet works with
the XML parser to help the user in viewing the
course bucket. The authoring tool works similarly.
However, in the case of a new bucket, a user
downloads one of the course templates along with
the authoring Java applets. During the authoring
process, a user provides the metadata whereas the
tool provides the context based on the XML
specification. Once the user has created or updated a
course bucket, it is submitted to the server, where it
is mapped to a two-level bucket by the Converter
and then stored as an NCSTRL+ bucket.

 Figure 3. XML aware publishing and browsing
tools.

The interaction of various components during
authoring and browsing is illustrated in Figure 4. A
key difference between the XML-based publishing
tools and the regular CGI based tools lies in the
interaction between the user and the applet for most
of the time, i.e., the XML-based tool has only to go
to the server at the end of the editing.

Figure 4. Interaction of various components during authoring and browsing.

M E T A DA T A

M E T A D AT A

M E T A DA T A

M E T A DA T A

M E T A DA T A

M E T AD A T A L INK

P S F ILE

D O W N L O A D

A ssig n m e n t 1

A ss ig nm e n ts

S E M E ST ER 99

C la ss 5 1 2 C S 5 1 2

S99.assts.asst1

S99

S99.assts

S99.assts.asst1.download

PSFILE

PDFFILE

Multilevel XML file Two-level BucketMapping

Bucket Package Element

View Applet

Bucket

Author Applet

upload file

Converter
Server

Download file

XML
specification

Internet

U S E R applet/
Client

Converter
/Server

Bucket

New Class

Requst template list

Select template

Request template

Return XML
specification

Local f i le

Edit Bucket
metadata

Edit
Package&Eleme

nt metadata

Select upload file
Input the

path&fi le name

Submit

Transfer XML f i le

Upload File

Add Package &
Element

Display the tree
view of bucket

Generate Bucket

6 Prototype

We have partially implemented the architecture
of Figure 3. We have implemented a view applet to
browse a multi-level course bucket, and an edit
applet to edit an existing course bucket. The current
interface implementation is developed using the Java
Swing 1.1. The Swing is a new GUI component kit
that simplifies and streamlines the development of
windowing components. Windowing components
are the visual components (such as menus, tool bars,
dialogs and the like) that are used in graphically

based applets and applications. Specifically, the
treeview control of Swing is well suited to the XML
tree-like structure. For the XML parser, we have
used the Java Project X Technology from Sun
icrosystems Inc. [20]. Java Project X is the code
name for XML technology services written
completely in the Java language. This package
provides core XML capabilities including a fast
XML parser with optional validation and an in-
memory object model tree that supports the W3C
DOM Level 1 recommendation [1]. A snapshot of
the view tools is shown in Figure 5.

Figure 5. A snapshot of the view and edit tool.

7 Future Work

Buckets by themselves have proven extremely
useful as shown in the conversion of a NASA digital
library [14]. We have, as yet, no such direct
evidence for the utility of multi-level course buckets.
We have done a requirements study for an
undergraduate digital library and have had focus
group meetings with students and teachers to obtain
feedback on our proposal for course buckets. These
meetings confirmed the importance of two major
cornerstones of our design and prototypes: the
ability to change the course model and the ability to
browse a course bucket according to the model. We
have demonstrated that XML technology can be
integrated with an existing digital library –
NCSTRL+. We are able to publish a course bucket
into NCSTRL+, find it through NCSTRL+ search
interface, and browse it with our course bucket tool.

There are a number of open issues with regard to
multi-level buckets we are working on. The major
one is the question as to how much of the model to
incorporate into the library search interface and how
to coordinate this model with the clustering
functionality. In the undergraduate education
environment a particular important issue is that of
conversion of existing course material to course
bucket format. This raises the problem of conversion
tools and the automatic deduction of model
metadata.

8 Conclusions

To study techniques for long-term course content
reuse, we have constructed the Undergraduate
Digital Library Framework (UDLF). To
accommodate a large population of content creators,
each with their own preferred applications and
course structure, we have built UDLF on buckets.
Buckets are self-contained, intelligent, mobile and
archive-independent digital library objects that can
aggregate and disseminate disparate content formats.

To represent arbitrarily complex course objects,
buckets had to be extended beyond their default 2
level structure. To accomplish this, we describe the
model using XML, and built separate Java applets to
enable the viewing of these extended buckets.
While the default presentation of the buckets is
maintained (using CGI), the Java applets add a
richer and domain specific view of the content.

Our early results indicate that buckets are well
suited for undergraduate learning archival and reuse,
but additional work is needed to enable the current
digital library interfaces (searching, browsing, and
maintenance) to take full advantage of the extended
buckets.

9 References

1. V. Apprano, S. Byrne, M. Champion, S. Isaacs,
I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R.
Sutor, C. Wilson & L. Wood, “Document
Object Model (DOM) Level 1 Specification,”
October 1998. http://www.w3.org/TR/REC-
DOM-Level-1/

2. W. Y. Arms. “A national library for
undergraduate science, mathematics,
engineering, and technology education: Needs,
options, and feasibility (technical
considerations),” Aug. 1997.
http://www.nap.edu/readingroom/books/dlibrary
/appa.html#arms.

3. E. Bertino & L. Martino, “Object Oriented
Database Management Systems: Concepts and
Issues,” IEEE Computer, 24(4), 1991, pp. 33-
48.

4. T. Bray, J. Paoli, & C. M. Sperberg-McQueen,
“Extensible Markup Language (XML) 1.0,”
February, 1998.
http://www.w3.org/TR/1998/REC-xml-
19980210

5. J. Davis & C. Lagoze, "The Networked
Computer Science Technical Report Library,"
Cornell CS TR96-1595, July 1996. http://cs-
tr.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.co
rnell/TR96-1595

6. J. R. Davis, D. B. Krafft, & C. Lagoze, “Dienst:
Building a Production Technical Report
Server,” Advances in Digital Libraries,
Springer-Verlag, 1995, pp. 211-222.

7. T. Duffy & D. Cunningham, “Contructivism:
Implications for the design and delivery of
instruction,” In D. Jonassen, editor, Handbook
of Research on Educational Communication
and Technology. New York: Scholastic, 1995.

8. S. L. Esler & M. L. Nelson, “Evolution of
Scientific and Technical Information
Distribution,” Journal of the American Society
of Information Science, 49(1), 1998, pp. 82-91.
http://techreports.larc.nasa.gov/ltrs/PDF/1998/jp
/NASA-98-jasis-sle.pdf

9. E. Fox & L. Kieffer, “Multimedia curricula,
courses and knowledge modules,” ACM
Computing Surveys, 27(4), December 1995, pp.
549-551.

10. R. Kahn & R. Wilensky, "A Framework for
Distributed Digital Object Services,"

cnri.dlib/tn95-01, May, 1995.
http://www.cnri.reston.va.us/cstr/arch/k-w.html

11. R. Lasher & D. Cohen, "A Format for
Bibliographic Records," Internet RFC-1807,
June 1995. http://info.internet.isi.edu/in-
notes/rfc/files/rfc1807.txt

12. K. Maly, M. Zubair, S. Shen, S. Zeil, M. L.
Nelson, M. Kholief, M. I. Ameerally, X. Liu &
Z. Zhao, “Planning Grant for the Use of Digital
Libraries in Undergraduate Learning in
Science,” 1999.
http://dlib.cs.odu.edu/nsf/dlib2/udlfplan/

13. K. Maly, M. L. Nelson, & M. Zubair, “Smart
Objects, Dumb Archives: A User-Centric,
Layered Digital Library Framework,” D-Lib
Magazine, March 1999.
http://www.dlib.org/dlib/march99/maly/03maly.
html

14. K. Maly, M. Zubair, S. N. T. Shen, & M. L.
Nelson, “Generalizing an Existing Digital
Library,” Old Dominion University CS TR-99-
01, February 1999.
http://cs-
tr.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.od
u_cs/TR_99_01

15. E. Miller, “An Introduction to the Resource
Description Framework,” D-Lib Magazine, May
1998.
http://www.dlib.org/dlib/may98/miller/05miller.
html

16. B. Muramatsu & A. M. Agogino, “The National
Engineering Education Delivery System: A
Digital Library for Engineering Education,” D-
Lib Magazine, April 1999.
http://www.dlib.org/dlib/april99/muramatsu/04
muramatsu.html

17. NASA Technical Report Server, 1999.
http://techreports.larc.nasa.gov/cgi-bin/NTRS

18. M. L. Nelson, K. Maly, S. N. T. Shen, & M.
Zubair, “Buckets: Aggregative, Intelligent
Agents for Publishing,” WebNet Journal 1(1),
1999, pp. 58-66. (Also available as NASA TM-
1998-208419).
http://techreports.larc.nasa.gov/ltrs/PDF/1998/t
m/NASA-98-tm208419.pdf

19. M. L. Nelson, K. Maly, S. N. T. Shen, & M.
Zubair, “NCSTRL+: Adding Multi-Discipline
and Multi-Genre Support to the Dienst Protocol
Using Clusters and Buckets,” Proceedings of
IEEE Advances in Digital Libraries 98, Santa
Barbara, CA, April 22-24, 1998.

http://techreports.larc.nasa.gov/ltrs/PDF/1998/m
tg/NASA-98-ieeedl-mln.pdf

20. Sun Microsystems, “Java Project X
Technology,” 1999. http://java.sun.com/

21. R.N. Taylor, F.C. Belz, L.A. Clarke, L.
Osterweil, R.W. Selby, J.C. Wileden, A.L.Wolf
& M. Young, “Foundations for the Arcadia
Environment Architecture,” Proceedings of
ACM SDE 3, Boston MA, November 28-30,
1988, pp. 1-13.

22. I. Thomas, “PCTE Interfaces: Supporting Tools
in Software-Engineering Environments,” IEEE
Software, 6(6), 1989, pp. 15-23.

23. WebCT, "WebCT - World Wide Web Course
Tools", http://www.webct.com/webct/, May
1999

24. S. Weibel, “The State of the Dublin Core
Metadata Initiative,” D-Lib Magazine, April
1999.
http://www.dlib.org/dlib/april99/04weibel.html

